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What is a metric graph?

A metric graph is made of vertices and of edges joining the vertices or
going to infinity.

« \ )

m metric graphs: the lengths of edges are important.
m the edges going to infinity are halflines and have infinite length.

m a metric graph is compact if and only if it has a finite number of
edges of finite length.
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Functions defined on metric graphs
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A metric graph G with three edges ey (length 5), e; (length 4) and e (length 3)
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A metric graph G with three edges ¢ (length 5), e; (length 4) and e, (length 3),
a function f : ¢ — R
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A metric graph G with three edges ¢ (length 5), e; (length 4) and e, (length 3),
a function ¥ : G — R, and the three associated real functions.
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Functions defined on metric graphs

fo

A metric graph G with three edges ¢ (length 5), e; (length 4) and e, (length 3),
a function ¥ : G — R, and the three associated real functions.

5 4 3
/dedZEf/ fb(x)dx—i—/ fl(x)dx—i-/ f(x) dx
g 0 0 0
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Why studying metric graphs?

Physical motivations

Modeling structures where only one spatial direction is important.

(0.9]

A « fat graph » and the underlying metric graph
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The differential system

Given constants p > 2 and A > 0, we are interested in solutions u € L2(G)
of the differential system
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of the differential system
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The differential system

Given constants p > 2 and A > 0, we are interested in solutions u € L2(G)
of the differential system

u” + |ulP~2u = Au on each edge e of G,

u is continuous for every vertex v of G,

Zdu

e~V dxe

(v)=0 for every vertex v of G,
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The differential system

Given constants p > 2 and A > 0, we are interested in solutions u € L2(G)
of the differential system

u” + |ulP~2u = Au on each edge e of G,

u is continuous for every vertex v of G,
du

Z (v)=0 for every vertex v of G,
dxe

exv

where the symbol e > vV means that the sum ranges over all edges of
vertex vV and where C‘li—;’e(v) is the outgoing derivative of u at v

(Kirchhoff’s condition).
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of the differential system

u” + |ulP~2u = Au on each edge e of G,

u is continuous for every vertex v of G, (NLS)
d
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The differential system

Given constants p > 2 and A > 0, we are interested in solutions u € L2(G)
of the differential system

u” + |ulP~2u = Au on each edge e of G,

u is continuous for every vertex v of G, (NLS)
d

Z u (v)=0 for every vertex v of G,

e~V dXe

where the symbol e > vV means that the sum ranges over all edges of
vertex vV and where cfl—)i’e(v) is the outgoing derivative of u at v

(Kirchhoff’s condition).
We denote by S)(G) the set of nonzero solutions of the differential system.
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Kirchhoff’s condition: degree one nodes

X1 - o0
im u(x1 +t) — u(x1) _0
t——0 t
t>0
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Kirchhoff’s condition: degree one nodes

X1 - o0
im u(x1 +t) — u(x1) _0
t——0 t
t>0

In other words, the derivative of u at x; vanishes: this is the usual
Neumann condition.
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Kirchhoff's condition in general: outgoing derivatives

(0.9]
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The real line: G =R

S\(R) = {:tgo,\(x + a) } ae R}

where the soliton ) is the unique strictly positive and even solution to

u" + [ulP7?u = Au.
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The halfline: G =R™ = [0, +o0]

S)\(R+) = {:I:(p)\(x)|R+}

Solutions are half-solitons: no more translations!
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The positive solution on the 3-star graph
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A continuous family of solutions on the 4-star graph
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Variational formulation

We work on the Sobolev space

HY(G) := {u G — R | uis continuous, u, v’ € L2(g)}.
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Variational formulation

We work on the Sobolev space
HY(G) := {u G — R | uis continuous, u, v’ € L2(g)}.

Solutions of (NLS) correspond to critical points of the action functional

1 A 1
I(u) = §||UI||%2(g) + 5””“%2@) - ;H“”Z’(g)'

Damien Galant
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Variational formulation

We work on the Sobolev space
HY(G) := {u G — R | uis continuous, u, v’ € L2(g)}.

Solutions of (NLS) correspond to critical points of the action functional

1 A 1
In(u) = §||U/||%2(g) + §||U||%2(g) - ;HUpr(g)-

The level of the soliton ¢ plays an important role in our analysis:

sy = ()
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The Nehari manifold

The functional Jy is not bounded from below on H(G), since if u # 0 then

t2. 0 At2 tP
(tw) = S 10 gy + %5 Ny = = Nullng) o =2
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The Nehari manifold

The functional Jy is not bounded from below on H(G), since if u # 0 then

t2 )\t2 tP
In(tu) = Sl gy + - llulliagy = Nullfagy 5 —oo-

A common strategy is to introduce the Nehari manifold Ny(G), defined by

NA(G) = {u € HY(9)\ {0} | S(u)[u] = 0}

= {u e HO)\ {0} | 1 32g) + MulZogy = llulfoqgy -
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The Nehari manifold

The functional Jy is not bounded from below on H(G), since if u # 0 then

t2 At? tP
In(tu) = 3”“’”%2(9) + 7”““%2@) - ;”u”ip(g) =~

A common strategy is to introduce the Nehari manifold Ny(G), defined by

NA(G) = {u € HY(9)\ {0} | S(u)[u] = 0}
= {u € HY(O)\ {0} | 1V 132(g) + MlullEgy = lullfng) }-

If ue N\(G), then
1

1
AW = (5= )l
In particular, Jy is bounded from below on N)(G).
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Two action levels
m « Ground state » action level:
a(g) = inf )J,\(U)

ueN (G

m Ground state: function u € N)(G) with level c\(G). It is a solution of
the differential system (NLS).
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Two action levels

m « Ground state » action level:

MG = ol gy )

m Ground state: function u € N)(G) with level c\(G). It is a solution of
the differential system (NLS).

m Minimal level attained by the solutions of (NLS):

ox(G) = ueigf(g) I(u).
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Two action levels

m « Ground state » action level:

MG = ol gy )

m Ground state: function u € N)(G) with level c\(G). It is a solution of
the differential system (NLS).

m Minimal level attained by the solutions of (NLS):

ox(G) = ueigf(g) I(u).

m Minimal action solution: solution u € S\(G) of the differential system
(NLS) of level o5(G).
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Four cases

An analysis shows that four cases are possible:
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Four cases

An analysis shows that four cases are possible:
A1) cA(9) = oA(G) and both infima are attained;
A2) cA(G) = oA(G) and neither infima is attained;
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Four cases

An analysis shows that four cases are possible:

Al) ex(G) = 0A(G) and both infima are attained;
A2) cx(G) = 0A(G) and neither infima is attained,;
B1) cn(9) < oA(G), oA(G) is attained but not c\(G);
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Four cases

An analysis shows that four cases are possible:

Al) ex(G) = 0A(G) and both infima are attained;
A2) cx(G) = 0A(G) and neither infima is attained,;
B1) cn(9) < oA(G), oA(G) is attained but not c\(G);
B2) cx(9) < oA(G) and neither infima is attained.
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Four cases

An analysis shows that four cases are possible:

1) eA(G) = oA(9) and both infima are attained;

2) ex(G) = 0A(G) and neither infima is attained;

1) ex(G) < oa(9), oA(G) is attained but not c)(G);
2) ex(G) < 0A(G) and neither infima is attained.

™ W > >

Theorem (De Coster, Dovetta, G., Serra (2023))

For every p > 2, every A > 0, and every choice of alternative between Al,
A2, Bl, B2, there exists a metric graph G where this alternative occurs.
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Case Al

cx(G) = ox(9) and both infima are attained

Compact graphs
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Case Al

cx(G) = ox(9) and both infima are attained

Compact graphs The line
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Case Al

cx(G) = ox(9) and both infima are attained

Compact graphs The line

The halfline
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Case Al

cx(G) = ox(9) and both infima are attained

Compact graphs The line

o0 0@ - o0

The halfline All graphs with c) (G) < sx
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Case B1
ex(G) < ox(G), ox(9) is attained but not c)(G)

N-star graphs, N > 3

sy =a(G) < oa(G) = Fsy
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Case A2

cx(G) = ox(G) and neither infima is attained

Le
Ls
Ly
L3
Lo

o
o

Vi Vo V3 Vg Vs Ve

sy = a(G) = oA(G)
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Case B2

cx(G) < ox(9) and neither infima is attained

L_3 L_> L_1 Ly Lo L3
Q
......... -~ - - o < - 5
R_3 R_2 R_1 Ro R1 Ro R3
00 00 00 00 00 00 00 00 00 00 00 00 00 0o

s =a(9) <oa9)
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Decreasing rearrangement on the halfline

\

A 4

& 4
For all 1 < p < o0,

lulleg) = Nl ller(og))-
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The Pélya—Szeg6 inequality

Theorem

Let u € H(G) be a nonnegative function. Then its decreasing
rearrangement u* belongs to H(0,|G|), and one has

1) 20,0y < N4’ ll2(g)-
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The Pélya—Szeg6 inequality
Theorem

Let u € H(G) be a nonnegative function. Then its decreasing
rearrangement u* belongs to H(0,|G|), and one has

1) 20,0y < N4’ ll2(g)-

Pélya, G., Szegé, G. Isoperimetric Inequalities in Mathematical

Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton
University Press. (1951).
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The Pélya—Szeg6 inequality

Theorem

Let u € H(G) be a nonnegative function. Then its decreasing
rearrangement u* belongs to H(0,|G|), and one has

1) 20,0y < N4’ ll2(g)-

Pélya, G., Szegé, G. Isoperimetric Inequalities in Mathematical
Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton
University Press. (1951).

Duff, G. Integral Inequalities for Equimeasurable Rearrangements.
Canadian Journal of Mathematics 22 (1970), no. 2, 408-430.
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The Pélya—Szeg6 inequality

Theorem

Let u € H(G) be a nonnegative function. Then its decreasing
rearrangement u* belongs to H(0,|G|), and one has

1) 20,0y < N4’ ll2(g)-

Pélya, G., Szegé, G. Isoperimetric Inequalities in Mathematical
Physics. Annals of Mathematics Studies. Princeton, N.J. Princeton
University Press. (1951).

Duff, G. Integral Inequalities for Equimeasurable Rearrangements.
Canadian Journal of Mathematics 22 (1970), no. 2, 408-430.

Friedlander, L. Extremal properties of eigenvalues for a metric graph.
Ann. Inst. Fourier (Grenoble) 65 (2005) no. 1, 199-211.
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The Pélya—Szeg6 inequality

A simple case: affine functions

We assume that v is piecewise affine.

Damien Galant



Metric graphs NLS Ground states Some proof techniques Take-home message
oo [EEEEEEEnE] oo [um mmm) [m]

The Pélya—Szeg6 inequality

A simple case: affine functions

We assume that v is piecewise affine.

We consider a small open interval / C u(G) so that u=(/) consists of a
disjoint union of open intervals on which v is affine.
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We assume that v is piecewise affine.

We consider a small open interval / C u(G) so that u=(/) consists of a
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The Pélya—Szeg6 inequality

A simple case: affine functions

We assume that v is piecewise affine.

€1+ﬁ2—7—f3+f4 |

We consider a small open interval / C u(G) so that u=(/) consists of a
disjoint union of open intervals on which v is affine.

Damien Galant



Metric graphs NLS Ground states Some proof techniques Take-home message
oo [EEEEEEEnE] oo [ums mm) [m]

The Pélya—Szeg6 inequality

A simple case: affine functions
Original contribution to |[u/|%, :

|17
£2

ue e

+ 43
2 7

_ 2
Ai=lig +6o
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The Pélya—Szeg6 inequality

A simple case: affine functions
Original contribution to |[u/|%, :

L L U U 1 i G U S 1
/Yy S L L i LS L i i
R TRy Ty T T, T T,
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The Pélya—Szeg6 inequality

A simple case: affine functions
Original contribution to |[u/|%, :

112 112 112 1 |2 P2 12
N R U

|17
A=00 y, _ P
- A B Ely PR A N

%
Contribution to ||(u*)'||2,

|12

B =
U1+l + 03+ Ly
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The Pélya—Szeg6 inequality

A simple case: affine functions
Original contribution to |[u/|%, :

|17
£2

|12
62

2R R R P
i i L i i i

L E R AR )

A:—€|£2 + 45 + {3

Contribution to ||(u*)'||2,

|12

B =
U1+l + 03+ Ly

Inequality between arithmetic and harmonic means:

b1+ by + 0344y 4
4 e R RS
Tttt
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The Pélya—Szeg6 inequality

A simple case: affine functions
Original contribution to |[u/|%, :

112 112 112 1 |2 P2 12
N R U

|17
A=00 y, _ P
- A B Ely PR A N

%
Contribution to ||(u*)'||2,

|12

B =
U1+l + 03+ Ly

Inequality between arithmetic and harmonic means:

51+£2+€3+€4> 4

= A>4’B>B.
=1 1 1 1 = =
4 atatinta
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A refined Pélya—Szegd inequality...

.. or the importance of the number of preimages

Theorem

Let u € H(G) be a nonnegative function. Let N > 1 be an integer.
Assume that, for almost every t € |0, ||u||[, one has

v {t}) = {x€G|ulx) =t} > N.
Then one has

N 1
1) 20,191y < N”’-’/”LZ(Q)'
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Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph G satisfies assumption (H) if, for every point
X0 € G, there exist two injective curves 1,72 : [0, +oo[ — G parameterized
by arclength, with disjoint images except for an at most countable number

of points, and such that v1(0) = 72(0) = xo.
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Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph G satisfies assumption (H) if, for every point
X0 € G, there exist two injective curves 71,72 : [0, +oo[ — G parameterized
by arclength, with disjoint images except for an at most countable number

of points, and such that 71(0) = 72(0) = xo.

X0

s - s
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Assumption (H)

Definition (Adami, Serra, Tilli 2014)

We say that a metric graph G satisfies assumption (H) if, for every point
X0 € G, there exist two injective curves 71,72 : [0, +oo[ — G parameterized
by arclength, with disjoint images except for an at most countable number
of points, and such that 71(0) = 72(0) = xo.

X0

s - s

Consequence: all nonnegative H(G) functions have at least two preimages
for almost every t €10, ||u||oo-
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Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are
much richer than the usual class of intervals of R.
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Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are
much richer than the usual class of intervals of R.
Dimension one has many advantages:

m “nice” Sobolev embeddings, H functions are continuous;

m counting preimages and the refined Pélya—Szegé inequality;

m ODE techniques;

m..

Replacing G by noncompact smooth open sets Q C R?, d > 2 and H}(G)
by H1(Q) or H}(£2), one expects that the four cases Al, A2, B1, B2
actually occur.
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Why studying metric graphs?

Mathematical motivations

Main message

Metric graphs allow to study interesting one dimensional problems and are
much richer than the usual class of intervals of R.
Dimension one has many advantages:

m “nice” Sobolev embeddings, H functions are continuous;

m counting preimages and the refined Pélya—Szegé inequality;

m ODE techniques;

m..

Replacing G by noncompact smooth open sets Q C R?, d > 2 and H}(G)
by H1(Q) or H}(£2), one expects that the four cases Al, A2, B1, B2
actually occur. However, to this day, it remains on open problem!

Damien Galant



Thanks! References Extra details Cases A2 and B2: what's going on?
- m o oo

Thanks for your attention!
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Adami R. Ground states of the Nonlinear Schrodinger Equation on
Graphs: an overview (Lisbon WADE).
https://www.youtube.com/watch?v=G-FcnRVvoos (2020)

Adami R., Serra E., Tilli P. Nonlinear dynamics on branched structures
and networks. https://arxiv.org/abs/1705.00529 (2017)

Kairzhan A., Noja D., Pelinovsky D. Standing waves on quantum
graphs. J. Phys. A: Math. Theor. 55 243001 (2022)

Damien Galant


https://www.youtube.com/watch?v=G-FcnRVvoos
https://arxiv.org/abs/1705.00529

Thanks! References Extra details Cases A2 and B2: what's going on?
[m] m | ssEsas] oo

Kirchhoff’s condition: degree two nodes

00 — 00
im u(xy +t) — u(x) | tim u(xy —t) — u(x1) _0
tt>—0>0 t tt>—0>0 t
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Kirchhoff’s condition: degree two nodes

00 00
- X1 —
< im u(xy +t) — u(x1)> N ( im u(xg —t) — u(x1)> _
t——0 t t——0 t
t>0 t>0

In other words, the left and right derivatives of u are equal, which simply
means that u is differentiable at x;. This explains why usually we do not
put degree two nodes.

Damien Galant



Thanks! References Extra details Cases A2 and B2: what's going on?
[m] m (s mmsas] oo

A very useful tool: cutting solitons on halflines

Proposition

Assume that G has at least one halfline. Then,

an(G) < sni=A(en)
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A very useful tool: cutting solitons on halflines

Proposition

Assume that G has at least one halfline. Then,

an(G) < sni=A(en)

Proof.
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Case Al

cx(G) = ox(9) and both infima are attained

Theorem (Adami, Serra, Tilli 2014)

Let G be a metric graph with finitely many edges, including at least one
halfline. Assume that

C)\(g) < S).

Then c)\(G) is attained, which means that there exists a ground state, so
we are in case Al: c)\(G) = o(G), both attained.
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Non-existence of ground states

Theorem (Adami, Serra, Tilli 2014)

If a metric graph G satisfies assumption (H), then
o (g):= inf JL(u)=s
A(9) o h(u) = sx

but it is never achieved
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o m

Non-existence of ground states

Theorem (Adami, Serra, Tilli 2014)

If a metric graph G satisfies assumption (H), then

= inf J =
a(9) o h(u) = sx

but it is never achieved, unless G is isometric to one of the exceptional
graphs depicted in the next two slides.
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Non-existence of ground states
Exceptional graphs: the real line

X1
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Cases A2 and B2: what's going on?
oo

Non-existence of ground states
Exceptional graphs: the real line with a tower of circles

i X1
X2

/ \ .
Cood

\ /

j Xn—1
Xn
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A doubly constrained variational problem

We define
Xe = {ue HY(G) | llullie(g) = llull=(e) |

where e is a given bounded edge of G
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A doubly constrained variational problem

We define
Xe = {ue HY(G) | llullie(g) = llull=(e) |

where e is a given bounded edge of G and we consider the
doubly—constrained minimization problem

alG:€) = inf o )
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A doubly constrained variational problem
We define
Xe = {ue HY(G) | llullie(g) = llull=(e) |

where e is a given bounded edge of G and we consider the
doubly—constrained minimization problem

= inf .
MG €)= i, B
Theorem (De Coster, Dovetta, G., Serra (2023))

If G satisfies assumption (H) has a long enough bounded edge e, then

cA(G, e) is attained by a solution u € S)(G), such that u >0 or u <0 on
g and

lulloey > llullLoe(ge)-
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What's going on in case A27

cx(G) = ox(G) and neither infima is attained

Ls
Ly
L3

Lo

0
o

Cases A2 and B2: what's going on?
| smms}

Le

Vi Vo V3 Va Vs

Ve
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What's going on in case A27

m Since G has at least one halfline and satisfies assumption (H), one has
cx(G) = sy and the infimum is not attained (as G does not belong to
the class of exceptional graphs).
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What's going on in case A27

m Since G has at least one halfline and satisfies assumption (H), one has
cx(G) = sy and the infimum is not attained (as G does not belong to
the class of exceptional graphs).

m Cutting solitons on the loops, one sees that

CA(g,ﬁn) m S\
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What's going on in case A27

m Since G has at least one halfline and satisfies assumption (H), one has
cx(G) = sy and the infimum is not attained (as G does not belong to
the class of exceptional graphs).

m Cutting solitons on the loops, one sees that

ax(G, L) oo X
m According to the existence Theorems, c\(G, L,) is attained by a
solution of (NLS) for every n large enough.
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What's going on in case A27

m Since G has at least one halfline and satisfies assumption (H), one has
cA(G) = sy and the infimum is not attained (as G does not belong to
the class of exceptional graphs).

m Cutting solitons on the loops, one sees that

ax(G, L) oo X
m According to the existence Theorems, c)\(G, L) is attained by a
solution of (NLS) for every n large enough.

m One obtains
sy = a(9) < oa(9) < liminf ci(G, Ln) = sy,

SO

ax(G) = ox(G) = sy

and neither infimum is attained.
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What's going on in case B27
cx(G) < ox(9) and neither infima is attained

L_3 L_ L4 L1 Lo L3
Q
""""" V_3 V_o V_1 Vo V1 Va2 V3
R_3 R_2 R-1 Ro RR Ra2 R3
o o0 o0 oo oo o0 o0 oo oo o0 o0 o0 o0 o

The graph Gy.

The loops £; have length N and B is made of N edges of length 1.
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What's going on in case B27
A second, periodic, graph

L_3 L_» L_1 EO Z1 Zz 23
V_3 V_2 V_1 Vo V1 Vo V3
73,3 7%72 7’571 ﬁo AR#I% 7%2 73/3
[e) 00 00 00 0O 00 00 00 0O 00 00 00 00 o]

The graph Gn.

The loops Z,- have length N.
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What's going on in case B27

Two problems at infinity

m Since Gy and QN satisfy (H) and contain halflines, one has
sy = ax(Gn) = aa(Gn),

and neither infima is attained.
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What's going on in case B27

Two problems at infinity
m Since Gy and QN satisfy (H) and contain halflines, one has
sy = & (Gn) = ar(Gn),

and neither infima is attained.

= One can show that, if N is large enough, then ox(Gn) is attained
(using the periodicity of Gy).
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What's going on in case B27

Two problems at infinity

m Since Gy and QN satisfy (H) and contain halflines, one has

sy = ax(Gn) = aa(Gn),

and neither infima is attained.

= One can show that, if N is large enough, then o (Gy) is attained
(using the periodicity of Gy). Hence 5 (Gn) > sa.
m One then shows, using suitable rearrangement techniques, that

oA(Gn) = oA(Gn),
but that ox(Gn) is not attained.
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What's going on in case B27

Two problems at infinity

m Since Gy and QN satisfy (H) and contain halflines, one has

sy = ax(Gn) = aa(Gn),

and neither infima is attained.

= One can show that, if N is large enough, then o (Gy) is attained
(using the periodicity of Gy). Hence 5 (Gn) > sa.
m One then shows, using suitable rearrangement techniques, that

oA(Gn) = oA(Gn),

but that ox(Gn) is not attained.
m Therefore, for large N, we have that

sy = ax(Gn) < oa(Gn),

and neither infima is attained, as claimed.
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